This application note discusses the technical aspects of battery energy storage system design and operation and their influence upon system efficiency and lifetime. The various roles of electrical energy storage systems are discussed first in order to gain appreciation of the way these systems are used. This is followed by a discussion of the most common battery technologies and their aging mechanisms. Factors which affect the efficiency and lifetime of power electronics are also discussed, since power converter(s) and associated switchgear are essential elements and determine in part the performance of energy storage systems.
A common factor which affects both the lifetime of batteries and (power) electronics is heat: the higher the temperature, the faster a component ages. Energy losses result mostly in heat production. Striving for high energy efficiency in both the battery and power electronics thus gives a double payoff: in addition to the energy savings, the lowered heat production results in lowered cooling requirements and longer life of components due to a lower operating temperature.
You received this message because you are subscribed to the Google Groups "Mercado de Energia Elétrica" group.
To unsubscribe from this group and stop receiving emails from it, send an email to meefurb+unsubscribe@googlegroups.com.
To post to this group, send email to meefurb@googlegroups.com.
For more options, visit https://groups.google.com/d/optout.

Postar um comentário